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Abstract

Drought monitoring is a key component to mitigate impacts of droughts. Lack of reliable
and up-to-date datasets is a common challenge across the Globe. This study investi-
gates different datasets and drought indicators on their capability to improve drought
monitoring in Africa. The study was performed for four river basins located in different5

climatic regions (the Oum er-Rbia in Morocco, the Blue Nile in Eastern Africa, the Up-
per Niger in Western Africa, and the Limpopo in South-Eastern Africa) as well as the
Greater Horn of Africa.

The five precipitation datasets compared are the ECMWF ERA – Interim reanaly-
sis, the Tropical Rainfall Measuring Mission satellite monthly rainfall product 3B43, the10

Global Precipitation Climatology Centre gridded precipitation dataset, the Global Pre-
cipitation Climatology Project Global Monthly Merged Precipitation Analyses, and the
Climate Prediction Center Merged Analysis of Precipitation. The set of drought indi-
cators used includes the Standardized Precipitation Index, the Standardized Precipita-
tion–Evaporation Index, Soil Moisture Anomalies and Potential Evapotranspiration.15

A comparison of the annual cycle and monthly precipitation time series shows a
good agreement in the timing of the rainy seasons. The main differences between
the datasets are in the ability to represent the magnitude of the wet seasons and ex-
tremes. Moreover, for the areas affected by drought, all the drought indicators agree on
the time of drought onset and recovery although there is disagreement on the extent of20

the affected area. In regions with limited rain gauge data the estimation of the different
drought indicators is characterised by a higher uncertainty. Further comparison sug-
gests that the main source of error in the computation of the drought indicators is the
uncertainty in the precipitation datasets rather than the estimation of the distribution
parameters of the drought indicators.25
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1 Introduction

Assessment of drought impacts requires understanding of regional historical droughts
as well as the bearings on human activities during their occurrences. Traditional meth-
ods for drought assessment are mainly based on water supply indices derived from
precipitation time-series alone. A sparse distribution of rain gauges and short or incom-5

plete historical rainfall records may, however, lead to significant errors in the estimation
of water supply indices derived from precipitation time-series.

As a consequence of drought, many countries in Africa have seen recurrent famines
that affected millions of people (Rojas et al., 2011). Since, precipitation is fundamental
for rain-fed crops in these drought-prone regions, improvements in drought monitoring10

and early warning will improve our capacity to detect, anticipate, and mitigate famine
(Wilhite et al., 2000; Rowland et al., 2005). However, the lack of reliable and up-to-
date climatological data in many regions of Africa hinders the development of effective
real-time drought monitoring and early warning systems.

Recently, several rain gauge and remote sensing based estimations of precipitation15

became available, which exhibit discrepancies and limitations in representing rainfall at
local and regional scale. This has been highlighted for daily and monthly precipitation
datasets by Dinku et al. (2007, 2008) and Hirpa et al. (2010). The authors studied a rel-
atively dense station network over the Ethiopian highlands and found that at a monthly
time scale and a spatial resolution of 2.5◦ CMAP and TRMM 3B43 performed very well20

with a bias of less than 10 % and an RMS of about 25 %. Thiemig et al. (2012, 2013)
found that the Rainfall Estimation Algorithm (RFE) and TRMM 3B42 showed a high po-
tential in reproducing the interannual variability, the spatial and quantitative distribution
and the timing of rainfall events.

Liebmann et al. (2012) studied the spatial variations in the annual cycle compar-25

ing GPCP with TRMM and gauge-based Famine Early Warning System (FEWSNET)
datasets. They found that GPCP estimates are generally higher than TRMM in the
wettest parts of Africa, but the timing of the annual cycle and onset dates are con-
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sistent. Dutra et al. (2013a) found significant differences (mainly in the equatorial
area) in the quality of the precipitation between the ERA-Interim, GPCP and the Cli-
mate Anomaly Monitoring System – Outgoing Longwave Radiation Precipitation Index
(CAMS-OPI) datasets for different river basins in Africa. From these studies it is evi-
dent that the question on which dataset best represents African precipitation is still not5

sufficiently answered.
The difficulty in establishing a “ground truth” of precipitation in Africa also affects

the uncertainty in the calculation of derivatives of precipitation, like drought indicators,
since the relationship between the quality of a precipitation product and any drought
indicator is nonlinear. This means that errors in the precipitation can be amplified or10

dampened when a drought index is computed. Previous works have reviewed and
compared several drought indicators (Heim, 2002; Anderson et al., 2011; Shukla et al.,
2011; Vicente-Serrano et al., 2012). However, an agreement between different indica-
tors is not necessarily observed as the capability to detect droughts changes between
indicator, system and region.15

The main goal of this study was to identify the main sources of uncertainty in the
computation of the drought indicators. Furthermore, an assessment was done on the
ability of the different datasets and drought indicators (SPI, SPEI, PET and SMA) to
represent the spatio-temporal features of droughts in different climate regimes across
Africa.20

2 Data and methods

2.1 Study area

The analysis was performed at continental level over Africa with particular focus on four
river basins (Oum er-Rbia, Limpopo, Niger, and Eastern Nile) as well as the Greater
Horn of Africa (GHA). The size and geographical extent of the highlighted areas are25

13410

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/13407/2013/hessd-10-13407-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/13407/2013/hessd-10-13407-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 13407–13440, 2013

Establishing the
dominant source of

uncertainty in
drought indicators

G. Naumann et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

provided in Table 1 and Fig. 1. The regional study areas selected cover a range of
climates and socio-economic systems in Africa.

2.2 Precipitation data

The five precipitation datasets used were the “ECMWF ERA-INTERIM (ERA-I) Re-
analysis” (approximately 0.7◦×0.7◦, bilinear interpolation to 0.5◦×0.5◦), “Tropical Rain-5

fall Measuring Mission” (TRMM) satellite monthly rainfall product 3B43 (0.25◦ ×0.25◦),
the “Global Precipitation Climatology Centre” (GPCC) gridded precipitation dataset
V.5 (0.5◦ ×0.5◦), the Global Precipitation Climatology Project (GPCP) Global Monthly
Merged Precipitation Analyses (2.5◦×2.5◦) and the CPC Merged Analysis of Precipita-
tion (CMAP, 2.5◦ ×2.5◦) (Table 2).10

This work uses the TRMM Multisatellite Precipitation Analysis (TMPA) estimation
computed at monthly intervals as TRMM 3B-43 dataset for the period 1998–2010 (Huff-
man et al., 2007). This product combines the estimates generated by the TRMM and
other satellite products (3B-42) with the Climate Anomaly Monitoring System (CAMS)
gridded rain gauge data and/or the GPCC global rain gauge data at 0.25◦ ×0.25◦ res-15

olution The GPCC full reanalysis version 5 (Rudolph et al., 1994) was used for 1979
to 2010. This dataset is based on quality-controlled precipitation observations from
a large number of stations (up to 43 000 globally) with irregular coverage in time.

The ECMWF ERA-I reanalysis, the latest global atmospheric reanalysis produced by
ECMWF extends from 1 January 1979 to the present date. See Dee et al. (2011) for20

detailed descriptions of the atmospheric model used in ERAI, the data assimilation sys-
tem, the observations used, and various performance aspects. The ERAI configuration
has a spectral T255 horizontal resolution (about 0.7◦×0.7◦ in the grid-point space) with
60 model vertical levels. For the present application, the monthly precipitation means
were spatially interpolated (bilinear) to a regular 0.5◦ ×0.5◦ grid.25

The Global Precipitation Climatology Project (GPCP, Huffman et al., 2009) combines
the precipitation information available from several sources such as the Special Sen-
sor Microwave/Imager (SSM/I) data from the Defence Meteorological Satellite Program
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(DMSP, United States) satellites, infrared (IR) precipitation estimates computed primar-
ily from geostationary satellites, low-Earth orbit estimates including the Atmospheric
Infrared Sounder (AIRS) Television Infrared Observation Satellite Program (TIROS)
Operational Vertical Sounder (TOVS), and Outgoing Longwave Radiation Precipitation
Index (OPI) data from the NOAA series satellites. The gauge data are assembled and5

analyzed by the Global Precipitation Climatology Centre (GPCC). The latest version
of GPCP v2.2 that was used is available since January 1979 to December 2010 in
a regular 2.5◦ ×2.5◦ grid.

The CPC Merged Analysis of Precipitation (“CMAP”) is a technique which produces
pentad and monthly analyses of global precipitation in which observations from rain10

gauges are merged with precipitation estimates from several satellite-based algorithms
(infrared and microwave). The analysis are on a 2.5◦ ×2.5◦ latitude/longitude grid and
extend back to 1979. For further information refer to Xie and Arkin (1997).

2.3 Drought indicators

The set of hydro-meteorological indicators analysed included the Standardized Pre-15

cipitation Index (SPI), Standardized Precipitation–Evaporation Index (SPEI), Potential
Evapotranspiration (PET) and Soil Moisture Anomalies (SMA). The three drought indi-
cators (SPI, SPEI, SMA) were computed at continental scale based on ERA-I, TRMM,
GPCP and GPCC for the SPI, ERA-I and GPCP for the SPEI while the SMA are derived
from ERA-I simulations.20

The individual drought episodes from the time series of all indicators were deter-
mined by considering different thresholds of the standardized indicators. The duration
of each dry event was determined as the number of consecutive months with negative
values (positive for PET) over the period 1998–2010. The monthly drought fractional
area was computed for different thresholds but is only shown for the values below the25

−1.0 threshold.
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2.3.1 Standardized Precipitation Index (SPI)

The Standardized Precipitation Index (SPI) was developed by McKee et al. (1993,
1995) to provide a spatially and temporally invariant measure of the precipitation deficit
(or surplus) for any accumulation timescale (e.g. 3, 6, 12 months). It is computed by
fitting a parametric Cumulative Distribution Function (CDF) to a homogenized precipita-5

tion time-series and applying an equi-probability transformation to the standard normal
variable. This gives the SPI in units of number of standard deviations from the median.

Typically, the gamma distribution is the parametric CDF chosen to represent the
precipitation time-series (e.g. McKee et al., 1993, 1995; Lloyd-Hughes and Saunders,
2002; Husak et al., 2007) since it has the advantage of being bounded on the left at10

zero and positively skewed (Thom, 1958; Wilks, 2006). Moreover, Husak et al. (2007)
and Naumann et al. (2012) have shown that the gamma distribution adequately mod-
els precipitation time-series in most of the locations over Africa. In this study we use
the Maximum-Likelihood Estimation (MLE) method to estimate the parameters of the
gamma distribution.15

A persistent negative anomaly of precipitation is the primary driver of drought, re-
sulting in a successive shortage of water for different natural and human needs. Since
SPI values are given in units of standard deviation from the standardised mean, neg-
ative values correspond to drier periods than normal and positive values correspond
to wetter periods than normal. The magnitude of the departure from the median is20

a probabilistic measure of the severity of a wet or dry event.

2.3.2 Standardized Precipitation–Evaporation Index (SPEI) and Potential
Evapotranspiration (PET)

The Standardized Precipitation Evapotranspiration Index (SPEI, Vicente-Serrano et al.,
2010) is based on precipitation and temperature data, and it has the advantage of com-25

bining different time dimensions (like the SPI) with the capacity to include the effects of
temperature variability on drought. The calculation combines a climatic water balance,
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the accumulation of a water deficit/surplus at different time scales, and an adjustment
to a log-logistic probability distribution. SPEI is similar to SPI, but it includes the tem-
perature impact via the potential evapotranspiration (PET) that is calculated following
Thornthwaite (1948). In the current work, we used ERAI 2-meter temperature to derive
PET, and the multiscalar index is calculated as P-PET over the different time-scales5

and normalized (like the SPI) using the log-logistic probability distribution.

2.3.3 Soil Moisture Anomalies (SMA)

Soil moisture anomalies were derived from ERA-I simulations by removing the mean
annual cycle. Further standardization, could be achieved by fitting the soil moisture
distribution to a probability distribution (similar to SPI or, SPEI) such as the Beta distri-10

bution (Sheffield et al., 2004) or just a simple z score (Dutra et al., 2008). In the current
work we compare the SMA z score following the considerations depicted in Dutra et al.
(2008). By normalizing the soil moisture with the z score, a classification scheme is
obtained that is similar and comparable to that of McKee et al. (1993) and Vicente
Serrano et al. (2012).15

2.4 Evaluation metrics

The precipitation datasets and drought indicators were assessed using different scores
available in the hydroGOF R-Package (Zambrano-Bigarini, 2013): Spearman’s corre-
lation coefficient (r ), Mean Absolute Error (MAE), Percent Bias (PBIAS) and the Index
of Agreement (d). Details of the Evaluation scores are listed in the Appendix.20

A direct quantitative assessment at continental scale is difficult due to the lack of an
actual validation dataset that represents the ground truth with adequately high spatial
or temporal resolution. The performance metrics (mean absolute error, relative bias
and index of agreement) were used to diagnose the relative reliability of each indicator
over different drought properties. This analysis does not assume that a single dataset25

or indicator is better than the other but highlights their temporal and spatial coherency.
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3 Results and discussion

3.1 Comparison of global precipitation datasets

The datasets analysed are based on in-situ data (GPCC), remote sensing estima-
tions (TRMM, GPCP) and a global circulation model (ERA-I). The datasets are not
completely independent. For example, TRMM and GPCP are mainly based on remote5

sensing data and GPCP uses GPCC over land. Figure 2 shows the mean annual pre-
cipitation for the ERA-I, GPCC, GPCP, CMAP and TRMM datasets over Africa. There
is an overall agreement between the datasets with respect to the mean as well as the
general spatial patterns of annual precipitation. These datasets agree on the north-
south gradient from the desert areas in the North to the tropical savannahs in the10

Sahel, followed by the precipitation maximum over the African rainforests related to
the location of the Inter-tropical Convergence Zone (ITCZ) and the drier climate in the
south-western part of Africa. The main differences are observed in the tropical area
and over un-gauged areas. In transition regions from the Sahel to the Sahara TRMM
estimations can exceed GPCC more than twofold while TRMM is substantially lower15

than the other estimations along the southwestern coast of West Africa (Liebmann
et al., 2012). There is also a tendency of higher precipitation in the tropical rainforest
in GPCP (Liebmann et al., 2012) and ERA-I (Dutra et al., 2013a, b) compared with the
other datasets. ERA-I overestimates the rainfall in the central African region which is
likely to be associated with a substantial warm bias in the model due to an underesti-20

mation of aerosol optical depth in the region (Dee et al., 2011).
For all the datasets and regions analysed the mean annual cycle of precipitation

shows good agreement with respect to the onset and end of the rainy season. This
is true also for the GHA region which is characterized by two rainy seasons (Fig. 3).
However, with respect to intensity the results are more heterogeneous. Although in the25

Limpopo and Oum er-Rbia Basins there is a good agreement between the datasets,
for the basins located between the tropics the discrepancies are higher with an overes-
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timation of ERA-I in the Blue Nile Basin and GHA and an underestimation in the Niger
Basin.

Apparently the density of rain gauges plays a role in determining the agreement be-
tween datasets. The best gauged regions (Oum er-Rbia and Limpopo; Table 1) are
those with the lowest dispersion in terms of annual cycle. By coincidence, these two5

regions (Oum er-Rbia and Limpopo) are located outside the tropical region, and their
precipitation variability is mainly controlled by large-scale synoptic weather systems,
while in the tropical region small-scale convective events play an important role. In
these regions, model uncertainties (for example land-atmosphere coupling), uncertain-
ties in satellite retrievals as well as poor gauge cover contribute to the large spread in10

the mean annual cycles.
The monthly datasets show a reasonable agreement over all regions in terms of the

correlation coefficients which is usually greater than 0.8 (Table 3). The CMAP dataset
deviates with values below 0.7 in some regions. Oum er-Rbia and Limpopo areas show
the best agreement between datasets with MAE values below 10 mmmonth−1. The15

bias in those two regions is below 20 % in all the cases except when TRMM and CMAP
are compared (30 %).

The biggest differences were observed for ERA-I in the Blue Nile and GHA regions.
In these regions the overestimation of monthly precipitation reached 40 mmmonth−1

and the bias can reach 90 % in the Blue Nile and around 50 % in the GHA.20

3.2 Comparison of drought indicators

The monthly patterns of drought over Africa for January 2000, 2003, 2006 and 2009
show that dry areas (indicators with negative values) are generally depicted in more
than one indicator, but their consistency varies with the drought type, as well as the
spatial and temporal scale (Fig. 4). There is a generally good spatial correspondence25

between all the indicators over the study period.
Overall, the index of agreement (d) shows that there is a good correspondence be-

tween indicators in all regions with mean d values greater than 0.6 for almost all the
13416
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comparisons (Fig. 5). PET seems to be uncoupled with the other indicators with low
values of d . However the effect on the computations of the SPEI is not major, since
the agreement of this indicator with the others is still high. Only the inner Niger Delta is
characterized by a weaker agreement, where d is often below 0.5.

Figure 6 shows the evolution of drought areas in 2000, 2003, 2006 and 2009 charac-5

terized by the number of indicators below a certain threshold. In almost all areas there
is a good agreement, with usually more than 3 indicators reporting drought conditions
per grid cell. However, there are some areas with only one indicator below the de-
fined threshold, mostly over Central Africa. There is scope to take advantage of these
discrepancies and agreements and propose the construction of a composite indicator10

(Svoboda et al., 2002; Sepulcre-Canto et al., 2012; Hao and AghaKouchak, 2013). The
development of a single composite drought indicator could improve the detection of the
onset of a drought and help to monitor its evolution more efficiently, at the same time
providing information on the uncertainty in the data. This will allow decision makers
and stakeholders to better handle uncertainties in early warning systems.15

The average duration of dry episodes lasted between 2 to 6 months for all indicators,
where the Niger Basin and the GHA differed the most (Fig. 7). Overall, dry periods
measured with SPEI tend to be 1 or 2 months more persistent if compared with the
other estimations, while PET is the indicator with less memory.

Regarding the areas that are under drought, all the datasets agree with the time of20

onset and recovery but there are sometimes disagreements on the area affected and
this disagreement tends to be dependent on the threshold selected. Figure 8 shows
the monthly fractional area under standardised values below −1.0. In general there is
a better agreement if the areas covered by any standardised indicator below −1.0 are
considered. In this analysis the Niger Basin and Greater Horn of Africa present more25

discrepancies reaching a difference of more than 50 % between SPI and SPEI esti-
mations during the 2009/2010 and 2005/2006 periods respectively. The soil moisture
anomalies tend to define less generalised droughts as it is hard to reach half the region
under dry conditions. However, even if the magnitude of the area is smaller with respect
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to the other indicators, the soil moisture shows a good correspondence except for the
period 2000/2002 in the inner Niger delta.

In order to define how the selected threshold could affect the agreement between
datasets a correlation analysis was performed between different thresholds of SPI and
the areas affected by droughts in each region. Here the results of the different SPI esti-5

mations are presented, however similar results were found for the other indicators (not
shown). For almost all regions (except for Oum er-Rbia where this relationship is almost
constant) the correlation between the different SPI’s is higher for thresholds closer to
zero (Fig. 9). To consider a higher threshold to define areas affected by drought (e.g.
−0.8 or −1), therefore, will reduce the disagreement between indicators. However it10

puts a limit to the detection of the significance and severity of a drought. These results
highlight that the main differences between the indicators appear in the extreme events.

Also, the bias between estimations indicates an acceptable departure between esti-
mations from normal conditions until values near −0.5 (Fig. 10). Below this threshold
the bias increases exponentially surpassing quickly a bias of 100 % around SPI val-15

ues of −1. For Niger and GHA regions there is only a reasonable agreement between
ERA-I and GPCC estimations.

Generally in the Oum er-Rbia and Limpopo Basins, both extra-tropical regions, the
agreement is high, possibly due to the greater number of in-situ observations and the
importance of large-scale synoptic weather systems in these areas.20

For the basins located between the tropics a greater disagreement is observed due
to different factors. The main common factor is the remarkable absence of observations
to calibrate and test the datasets. These deficiencies are also more evident in complex
mountainous areas such as the Eastern Nile Basin. Furthermore, droughts in equa-
torial regions are mainly driven by the absence of convective events during the rainy25

season. These mesoscale dimension events are hard to be reproduced by models and
even difficult to monitor in areas with scarce in-situ rain gauges.

For dryer regions, such as the inner Niger delta and the GHA, the estimation of the
distribution parameters needed for the computation of the standardized indicators can
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be biased (or lower bounded) by the large amount of zero or near null precipitation
observations. As depicted in Wu et al. (2007), the estimation of the gamma probability
density function and the limited sample size in dry areas reduce the confidence of the
SPI values. In these cases, the SPI may never attain very negative values, failing to
detect some drought occurrences (e.g. SPI always above −1 in Niger and GHA). The5

discrepancies between indicators for lower thresholds over regions with limited rain
gauge data is characterised by the uncertainties of extreme values. This suggests that
the main sources of error are the uncertainties in the precipitation datasets that are
propagated in the estimation of the distribution parameters of the drought indicators.

The above discussion underlines the fact that drought monitoring and assessment is10

a difficult task, not only due to the nature of the phenomenon, but also due to the lim-
itations inherent in the availability of long-term and high quality datasets for extended
regions. The meteorological datasets as well as the indicators and models used must
be selected carefully and their limitations need to be taken into account. As a conse-
quence no definite conclusion can be drawn for the use of a single dataset or indicator.15

Depending on the region to be studied, different combinations may have to be chosen.
Our results further underline the value of maintaining an operative monitoring net-

work at country, continental or even global level since indirect observations have their
intrinsic uncertainties linked to the availability and reliability of “ground truth” for their
calibration. Without constant calibration, model-inherent errors can propagate up to the20

same magnitude of the phenomena (or indicator) to be analysed. In fact, the resulting
uncertainties can be so big that for certain events such as droughts with a severity
corresponding to an SPI of −2 it is difficult to get an additional value with respect to
standard climatologies.

The development of a combined indicator based on a probabilistic approach (e.g. Du-25

tra et al., 2013c) could be useful as a monitoring product at continental scale in this
case. However, at local scale the kind of indicator and the source of data must be
chosen carefully taking into account their limitations.
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4 Conclusions

This study evaluated the capabilities of different drought indicators (including SPI,
SPEI, PET and SMA) in detecting the timing and extension of drought across Africa,
using five different precipitation datasets (TRMM, ERA-Interim, GPCC, GPCP and
CMAP). The analysis was performed on a Pan-African scale and on a regional scale5

focused on four river basins and on the Greater Horn of Africa.
A comparison of the annual cycle and monthly precipitation time series shows a good

agreement in the timing of the peaks, including the Greater Horn of Africa were there
are two rainy seasons. The main differences are observed in the ability to represent
the magnitude of the wet seasons and the extremes.10

The monthly mean precipitation datasets agree over all regions with the only ex-
ception of the CMAP dataset that shows a lower agreement. In the Oum er-Rbia and
Limpopo Basins there is a good agreement between the datasets with mean absolute
errors below 10 mmmonth−1. The bias in those two regions is below 20 %. The worst
performance of ERA-I was observed in the Blue Nile Basin, overestimating the monthly15

precipitation up to 40 mmmonth−1 with a bias of up to 92 %. Also in the GHA region the
bias is around 50 % with an overestimation of up to 17 mmmonth−1.

The comparative analysis between TRMM, ERA-I, GPCP and GPCC datasets sug-
gests that it is feasible to use TRMM time series with high spatial resolution for reliable
drought monitoring over parts of Africa. It is possible to take advantage of this dataset20

mainly at regional level due to its high spatial resolution. However, higher discrepan-
cies in SPI estimations are shown in mountainous areas and areas with a sparse in situ
station density. On the other hand, drought monitoring at continental level with ERA-I
performs better outside the areas influenced by the ITCZ.

The comparison between drought indicators suggests that the main discrepancies25

are due to the uncertainties in the datasets (driven by a lack of ground information, un-
certainties in the estimation algorithms or the parameterization of the convection) rather
than to the estimation of the distribution parameters. This is why the SPI estimations
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for the Oum er-Rbia and Limpopo regions are those that exhibit a better agreement
between estimations. While for the other regions the discrepancies between datasets
are in many cases acceptable, greater discrepancies are observed for the inner Niger
Basin when comparing ERA-I estimations with the other datasets.

Regarding the areas that are under drought, all the indicators agree with the time of5

onset and recovery but there are sometimes disagreements with respect to the area af-
fected, and the level of disagreement tends to be dependent on the threshold selected.

It is proposed to integrate different indicators and accumulation periods in the form
of a multivariate combined indicator in order to take advantage of their different drought
properties. The probabilistic nature of such an approach would be very helpful for de-10

cision makers and for the combined analysis of multiple risks.

Appendix A

The Spearman correlation represents the Pearson correlation coefficient computed us-
ing the ranks of the data. Conceptually, the Pearson correlation coefficient is applied15

to the ranks of the data rather than to the data values themselves. The Spearman
coefficient is a more robust and resistant alternative to the Pearson product-moment
correlation coefficient (Wilks, 2006). Computation of the Spearman rank correlation can
be described as:

r = 1−
6
∑

R2
i

n(n2 −1)
(A1)20

where Ri is the difference in ranks between the i-th pair of data values. In cases of ties,
where a particular data value appears more than once, all of these equal values are
assigned their average rank before computing the Ri ’s.

The Mean Absolute Error (MAE) measures the average magnitude of the errors in
a set of different estimations of a certain indicator. It measures accuracy for continuous25

variables without considering the direction of the error. Also, this quantity is usually
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used to measure how close simulated forecasts or predictions (sim) are to the eventual
observations (obs) as shown in Eq. (2)

MAE =
1
n

n∑
i=1

|(simi −obsi )| (A2)

where n represents the number of pairs of the simulated (sim) and observed (obs)
indicators.5

The percent bias (PBIAS) measures the average tendency of the simulated values
to be larger or smaller than the observed ones.

Bias(%) = 100

∑
(sim−obs)∑

(obs)
(A3)

The optimal value of PBIAS is 0, with low-magnitude values indicating accurate rep-
resentation of drought indicators. Positive values indicate an overestimation bias,10

whereas negative values indicate an underestimation bias. It must be taken into ac-
count that this metric depends on which dataset is considered to represent the obser-
vations.

The Index of Agreement (d) developed by Willmott (1981) as a standardized mea-
sure of the degree of model prediction error varies between 0 and 1. A value of 115

indicates a perfect match, and 0 indicates no agreement at all (Willmott, 1981). The
index of agreement can detect additive and proportional differences in the observed
and simulated means and variances; however, it is overly sensitive to extreme values
due to the squared differences (Legates and McCabe, 1999).

d = 1−
∑

(obs− sim)2∑
(|sim−obs|+ |obs−obs|)2

(A4)20
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Table 1. Geographical extent of the African regions and number of grid cells analysed for each
dataset. For GPCC, the percentage of stations per grid and the percentage of pixels without
stations are respectively shown between brackets.

Region Area (106 × km2) Longitude–Latitude GPCC Grid cells

A – Oum er-Rbia 0.49 [10◦ W–0◦ E]× [31◦ N–35◦ N] 36 (52, 65)
B – Niger 1.48 [10◦ W–0◦ E]× [6◦ N–18◦ N] 120 (23, 70)
C – Eastern Nile 1.23 [30◦ E–40◦ E]× [7◦ N–17◦ N] 100 (23, 75)
D – Limpopo 0.94 [25◦ E–34◦ E]× [26◦ S–20◦ S] 54 (56, 44)
E – GHA 2.22 [40◦ E–52◦ E]× [2◦ S–12◦ N] 180 (15, 85)
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Table 2. Description of global datasets available in near-real time that could be used for moni-
toring precipitation conditions at continental level.

Datasets resolution period Source Update

ERA INTERIM 0.5◦ ×0.5◦ 1979–present ECMWF Reanalysis 1/2 month
TRMM 3B-43 v.6 0.25◦ ×0.25◦ 1998–present RSE (combination 3B-42, 1 or 2 months

CAMS and/or GPCC)
GPCC v.5 0.5◦ ×0.5◦ 1901–2010 In-situ data 1 month
(Combined) (1◦ ×1◦) (–present)
GPCP v.2.2 2.5◦ ×2.5◦ 1979–2010 RSE (merged from microwave, infrared irregular

and sounder data and precipitation
gauge analyses (GPCC).

CMAP 2.5◦ ×2.5◦ 1979–2009 RSE (GPI, OPI,S SM/I scattering, irregular
SSM/I emission and MSU+NCEP/
NCAR Reanalysis)
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Table 3. Correlation coefficient (r ), Mean absolute error (MAE) and percent bias (%) between
the different precipitation datasets averaged over each region for the common period 1998–
2010. All correlations are significant at 99 %.

TRMM GPCC GPCP CMAP ERAI
r MAE BIAS r MAE BIAS r MAE BIAS r MAE BIAS r MAE BIAS

OER TRMM – – – 0.99 2.5 2.7 0.99 2.9 6.7 0.74 7.8 42.8 0.95 7.3 26.3
GPCC 0.99 2.5 −2.6 – – – 0.99 2.5 4.2 0.94 4.7 23.1 0.95 6.7 24.4
GPCP 0.99 2.9 −6.2 0.99 2.5 −4 – – – 0.73 6.5 33.9 0.95 5.7 18.4
CMAP 0.74 7.8 −30 0.94 4.6 −18.7 0.73 6.5 −25.3 – – – 0.68 7.0 −11.6
ERAI 0.95 7.3 −20.8 0.95 6.6 −19.6 0.95 5.7 −15.5 0.68 7.0 13.1 – – –

NIG TRMM – – – 0.99 5.8 −1.9 0.98 13.6 −14.5 0.8 13.9 7.2 0.94 23.2 8
GPCC 0.99 5.8 1.9 – – – 0.99 11.6 −14.1 0.97 6.9 −1 0.95 22.2 8.3
GPCP 0.98 13.6 17 0.99 11.5 16.4 – – – 0.82 16.7 25.4 0.95 25.8 26.4
CMAP 0.8 13.8 −6.7 0.97 6.9 1 0.82 16.8 −20.3 – – – 0.78 25.8 0.7
ERAI 0.94 23.1 −7.4 0.95 22.2 −7.7 0.95 25.8 −20.9 0.78 25.8 −0.7 – – –

ENL TRMM – – – 0.94 17.6 −23.7 0.93 17.4 −22.4 0.82 15.3 −0.6 0.93 43.9 −48.1
GPCC 0.94 17.6 31 – – – 1 2.7 1.9 0.97 12.1 22.5 0.97 29.9 −32.3
GPCP 0.93 17.4 28.9 1 2.66 −1.9 – – – 0.85 14.3 28.2 0.97 30.1 −33.1
CMAP 0.82 15.3 0.6 0.97 12.1 −18.4 0.85 14.3 −22 – – – 0.86 43.4 −47.8
ERAI 0.93 43.9 92.8 0.97 29.9 47.6 0.97 30.1 49.5 0.86 43.4 91.7 – – –

LIM TRMM – – – 0.98 7.03 8.9 0.97 8.4 6.7 0.76 12.6 20.6 0.96 10.4 9
GPCC 0.98 7.0 −8.2 – – – 0.99 5.1 −3.3 0.91 8.3 1.8 0.98 8.1 −1.5
GPCP 0.97 8.4 −6.3 0.99 5.1 3.4 – – – 0.79 9.9 13 0.97 8.8 2.1
CMAP 0.76 12.6 −17 0.91 8.3 −1.8 0.79 9.9 −11.5 – – – 0.79 12.8 −9.6
ERAI 0.96 10.4 −8.2 0.98 8.1 1.5 0.97 8.8 −2.1 0.79 12.8 10.6 – – –

GHA TRMM – – – 0.82 9.8 −4.2 0.88 6.6 1.7 0.72 9.2 11.2 0.84 17.8 −34
GPCC 0.82 9.8 4.4 – – – 0.9 8.2 7.1 0.84 9.4 8.4 0.83 17.1 −30.9
GPCP 0.88 6.6 −1.7 0.9 8.2 −6.6 – – – 0.7 9.6 9.3 0.92 16.4 −35.1
CMAP 0.72 9.2 −10.1 0.84 9.4 −7.8 0.7 9.6 −8.5 – – – 0.61 22.7 −40.6
ERAI 0.84 17.8 51.5 0.83 17.1 44.7 0.92 16.4 54.1 0.61 22.7 68.4 – – –
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Table 4. Spearman correlation coefficient (r ), mean absolute error (MAE) and percent bias
(%) between the different SPI-3 estimations averaged over each region for the common period
1998–2010.

TRMM GPCC GPCP ERAI
r MAE r MAE r MAE r MAE

Oum TRMM – – 0.89 0.28 0.81 0.38 0.84 0.37
er-Rbia GPCC 0.89 0.28 – – 0.81 0.35 0.81 0.34

GPCP 0.81 0.38 0.81 0.35 – – 0.74 0.5
ERAI 0.84 0.37 0.81 0.34 0.74 0.5 – –

Niger TRMM – – 0.85 0.26 0.79 0.38 0.71 0.5
GPCC 0.85 0.26 – – 0.91 0.29 0.72 0.46
GPCP 0.79 0.38 0.91 0.29 – – 0.67 0.65
ERAI 0.71 0.5 0.72 0.46 0.67 0.65 – –

Blue Nile TRMM – – 0.54 0.54 0.53 0.55 0.6 0.5
GPCC 0.54 0.54 – – 0.92 0.27 0.57 0.41
GPCP 0.53 0.55 0.92 0.27 – – 0.67 0.46
ERAI 0.6 0.5 0.57 0.41 0.67 0.46 – –

Limpopo TRMM – – 0.91 0.28 0.84 0.39 0.8 0.46
GPCC 0.91 0.28 – – 0.92 0.27 0.91 0.33
GPCP 0.84 0.39 0.92 0.27 – – 0.88 0.35
ERAI 0.8 0.46 0.91 0.33 0.88 0.35 – –

GHA TRMM – – 0.58 0.4 0.65 0.44 0.61 0.44
GPCC 0.58 0.4 – – 0.86 0.29 0.58 0.42
GPCP 0.65 0.44 0.86 0.29 – – 0.68 0.45
ERAI 0.61 0.44 0.58 0.42 0.68 0.45 – –
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Fig. 1. Annual mean precipitation from the GPCC dataset and African regions used in this
analysis as defined in Table 1 (OER: Oum er-Rbia; NIG: Inner Niger Delta; ENL: Eastern Nile,
LIM: Limpopo Basin and GHA: Greater Horn of Africa).
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Fig. 2. (A)–(E) Mean annual precipitation (mmyr−1) from different datasets for the common
period 1998–2010, (F) longitudinal cross section at 25◦ E of mean annual precipitation.
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Fig. 3. Mean annual cycle of precipitation from the different datasets averaged over the five
regions defined in Fig. 1 (OER: Oum er-Rbia, NIG: Inner Niger Delta, NIL: Eastern Nile, LIM:
Limpopo Basin and GHA: Greater Horn of Africa) for the common period 1998–2010.
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Fig. 4. Monthly anomalies in SPI-3 (ERAI, GPCP, TRMM), SPEI (ERAI and GPCP) and Soil
Moisture Anomalies (SMA) for January 2000, 2003, 2006 and 2009. Solid lines indicates the
zero contour.
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Fig. 5. Index of agreement (d) between SPI, SPEI, SMA and PET for the five case studies
and the whole continent. (OER: Oum er-Rbia, NIG: Inner Niger Delta, NIL: Eastern Nile, LIM:
Limpopo Basin and GHA: Greater Horn of Africa.) Dashed lines extend from 5th to 95th per-
centile of estimations, boxes extend from 25th to 75th percentile and middle horizontal lines
within each box indicate the mean for each region.
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Fig. 6. Month by month evolution of droughts in 2000, 2003, 2006 and 2009 according to
grid cells with SPI-3/SPEI-3 computed using ERA-I GPCP, and TRMM below −1.0. Values are
ranged between 0 (no dataset with SPI-3/SPEI-3 below the threshold) and 5 (all datasets below
threshold).

13436

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/13407/2013/hessd-10-13407-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/13407/2013/hessd-10-13407-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 13407–13440, 2013

Establishing the
dominant source of

uncertainty in
drought indicators

G. Naumann et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 7. Duration of dry spells for the standardized indicators below zero in the common period
1998–2010. (OER: Oum er-Rbia, NIG: Inner Niger Delta, NIL: Eastern Nile, LIM: Limpopo Basin
and GHA: Great Horn of Africa). Dashed lines extend from 5th to 95th percentile of estimations,
boxes extend from 25th to 75th percentile and middle horizontal lines within each box indicate
the mean for each region.
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Fig. 8. Fractional area of each region under SPI, SPEI and SM and PET z scores below −1.0
for the period 1998–2010. (OER: Oum er-Rbia, NIG: Inner Niger Delta, NIL: Eastern Nile, LIM:
Limpopo Basin and GHA: Greater Horn of Africa.)
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Fig. 9. Pearson’s Correlation coefficient of fractional areas under drought between different
datasets and thresholds. The horizontal axis represents the SPI threshold below which areas
are considered to be under drought.
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Fig. 10. Relative bias between the estimation of fractional areas under drought for different
datasets and thresholds. The horizontal axis represents the SPI threshold below which areas
are considered to be under drought.
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